Holomorphic $\mathbb{C}$-fibrations and pseudoconvexity of general order
Tomassini, Giuseppe ; Vâjâitu, Viorel
J. Math. Kyoto Univ., Tome 46 (2006) no. 4, p. 693-700 / Harvested from Project Euclid
We consider a domain $D$ in $\mathbb{C}^{n}$ such that there is a Stein manifold $E$ which is a $\mathbb{C}$-fibration over $D$. Simple examples show that $D$ does not need to be Stein. However it cannot be arbitrarily and, in fact, we prove that $D$ is pseudoconvex of order $n-2$.
Publié le : 2006-05-15
Classification:  32F10,  32E10,  32F17
@article{1250281599,
     author = {Tomassini, Giuseppe and V\^aj\^aitu, Viorel},
     title = {Holomorphic $\mathbb{C}$-fibrations and pseudoconvexity of general order},
     journal = {J. Math. Kyoto Univ.},
     volume = {46},
     number = {4},
     year = {2006},
     pages = { 693-700},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250281599}
}
Tomassini, Giuseppe; Vâjâitu, Viorel. Holomorphic $\mathbb{C}$-fibrations and pseudoconvexity of general order. J. Math. Kyoto Univ., Tome 46 (2006) no. 4, pp.  693-700. http://gdmltest.u-ga.fr/item/1250281599/