A remark on pseudoconvex domains with analytic complements in compact Kähler manifolds
Ohsawa, Takeo
J. Math. Kyoto Univ., Tome 47 (2007) no. 3, p. 115-119 / Harvested from Project Euclid
For an effective divisor $A$ with support $B$ in a compact Kähler manifold $M$ of dimension $\geq 3$, the following are antinomic. ¶ a) $M\backslash B$ has a $C^{\infty}$ plurisubharmonic exhaustion function whose Levi form has pointwise at least 3 positive eigenvalues outside a compact subset of $M\backslash B$. ¶ b) $[A]|B$, the normal bundle of $A$, is topologically trivial.
Publié le : 2007-05-15
Classification:  32E40,  32J27,  32T35,  32V40
@article{1250281070,
     author = {Ohsawa, Takeo},
     title = {A remark on pseudoconvex domains with analytic complements in compact K\"ahler manifolds},
     journal = {J. Math. Kyoto Univ.},
     volume = {47},
     number = {3},
     year = {2007},
     pages = { 115-119},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250281070}
}
Ohsawa, Takeo. A remark on pseudoconvex domains with analytic complements in compact Kähler manifolds. J. Math. Kyoto Univ., Tome 47 (2007) no. 3, pp.  115-119. http://gdmltest.u-ga.fr/item/1250281070/