The secant varieties of nilpotent orbits
Omoda, Yasuhiro
J. Math. Kyoto Univ., Tome 48 (2008) no. 4, p. 49-71 / Harvested from Project Euclid
Let $\mathfrak{g}$ be a complex simple Lie algebra. We have the adjoint representation of the adjoint group $G$ on $\mathfrak{g}$. Then $G$ acts on the projective space $\mathbb{P}_{\mathfrak{g}}$. We consider the closure $X$ of the image of a nilpotent orbit in $\mathbb{P}_{\mathfrak{g}}$. The $i$-secant variety $Sec^{(i)}X$ of a projective variety $X$ is the closure of the union of projective subspaces of dimension $i$ in the ambient space $\mathbb{P}$ spanned by $i+1$ points on $X$. In particular we call the 1-secant variety the secant variety. In this paper we give explicit descriptions of the secant and the higher secant varieties of nilpotent orbits of complex classical simple Lie algebras.
Publié le : 2008-05-15
Classification: 
@article{1250280975,
     author = {Omoda, Yasuhiro},
     title = {The secant varieties of nilpotent orbits},
     journal = {J. Math. Kyoto Univ.},
     volume = {48},
     number = {4},
     year = {2008},
     pages = { 49-71},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250280975}
}
Omoda, Yasuhiro. The secant varieties of nilpotent orbits. J. Math. Kyoto Univ., Tome 48 (2008) no. 4, pp.  49-71. http://gdmltest.u-ga.fr/item/1250280975/