Thin Schubert cells of codimension two
Shinsuke Odagiri
J. Math. Kyoto Univ., Tome 48 (2008) no. 4, p. 265-275 / Harvested from Project Euclid
A condition on a matroid of rank $n-2$ for the corresponding thin Schubert cell being nonempty is determined. A necessary and sufficient condition for $k$ and $n$ so that the closure of a thin Schubert cell in $G(k,n)$ is always a union of thin Schubert cells is given.
Publié le : 2008-05-15
Classification:  14M15,  05B35
@article{1250271412,
     author = {Shinsuke Odagiri},
     title = {Thin Schubert cells of codimension two},
     journal = {J. Math. Kyoto Univ.},
     volume = {48},
     number = {4},
     year = {2008},
     pages = { 265-275},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250271412}
}
Shinsuke Odagiri. Thin Schubert cells of codimension two. J. Math. Kyoto Univ., Tome 48 (2008) no. 4, pp.  265-275. http://gdmltest.u-ga.fr/item/1250271412/