Some infinite elements in the Adams spectral sequence for the sphere spectrum
Liu, Xiu-Gui
J. Math. Kyoto Univ., Tome 48 (2008) no. 4, p. 617-629 / Harvested from Project Euclid
In the stable homotopy group $\pi_{p^nq+(p+1)q-1}(V(1))$ of the Smith-Toda spectrum $V(1)$, the author constructed an essential element $\varpi_n$ for $n\geq 3$ at the prime greater than three. Let $\beta_s^{\ast}\in[V(1), S]_{spq+(s-1)q-2}$ denote the dual of the generator $\beta_{s}^{\prime\prime} \in \pi_{s(p+1)q}(V(1))$, which defines the $\beta$-element $\beta_s$. In this paper, the author shows that the composite $\alpha_1 \beta_1 \xi_s \in \pi_{p^nq+(s+1)pq+sq-6}(S)$ for $1
Publié le : 2008-05-15
Classification:  55Q45,  55T15
@article{1250271386,
     author = {Liu, Xiu-Gui},
     title = {Some infinite elements in the Adams spectral sequence for the sphere spectrum},
     journal = {J. Math. Kyoto Univ.},
     volume = {48},
     number = {4},
     year = {2008},
     pages = { 617-629},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250271386}
}
Liu, Xiu-Gui. Some infinite elements in the Adams spectral sequence for the sphere spectrum. J. Math. Kyoto Univ., Tome 48 (2008) no. 4, pp.  617-629. http://gdmltest.u-ga.fr/item/1250271386/