Magnetic bottles on the Poincaré half-plane: spectral asymptotics
Morame, Abderemane ; Truc, Françoise
J. Math. Kyoto Univ., Tome 48 (2008) no. 4, p. 597-616 / Harvested from Project Euclid
We consider a magnetic Laplacian $-\Delta_A=(id+A)^{\star} (id+A)$ on the Poincaré upper-half plane $mathbb{H}$ when the magnetic field $dA$ is infinite at the infinity such that $-\Delta_A$ has pure discret spectrum. We give the asymptotic behavior of the counting function of the eigenvalues.
Publié le : 2008-05-15
Classification: 
@article{1250271385,
     author = {Morame, Abderemane and Truc, Fran\c coise},
     title = {Magnetic bottles on the Poincar\'e half-plane: spectral asymptotics},
     journal = {J. Math. Kyoto Univ.},
     volume = {48},
     number = {4},
     year = {2008},
     pages = { 597-616},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250271385}
}
Morame, Abderemane; Truc, Françoise. Magnetic bottles on the Poincaré half-plane: spectral asymptotics. J. Math. Kyoto Univ., Tome 48 (2008) no. 4, pp.  597-616. http://gdmltest.u-ga.fr/item/1250271385/