On parabolic geometry of type PGL(d,C)/P
Biswas, Indranil
J. Math. Kyoto Univ., Tome 48 (2008) no. 4, p. 747-755 / Harvested from Project Euclid
Let $P$ be the maximal parabolic subgroup of $\text{PGL}(d, {\mathbb C})$ defined by invertible matrices $(a_{ij})_{i,j=1}^d$ with $a_{dj}\,=\, 0$ for all $j\, \in\, [1\, ,d-1]$. Take a holomorphic parabolic geometry $(M\, ,E_P\, ,\omega)$ of type $\text{PGL}(d,{\mathbb C})/P$. Assume that $M$ is a complex projective manifold. We prove the following: If there is a nonconstant holomorphic map $f\, :\, {\mathbb C} {\mathbb P}^1\,\longrightarrow \, M$, then $M$ is biholomorphic to the projective space ${\mathbb C}{\mathbb P}^{d-1}$.
Publié le : 2008-05-15
Classification:  53C15,  14M17
@article{1250271316,
     author = {Biswas, Indranil},
     title = {On parabolic geometry of type PGL(d,C)/P},
     journal = {J. Math. Kyoto Univ.},
     volume = {48},
     number = {4},
     year = {2008},
     pages = { 747-755},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250271316}
}
Biswas, Indranil. On parabolic geometry of type PGL(d,C)/P. J. Math. Kyoto Univ., Tome 48 (2008) no. 4, pp.  747-755. http://gdmltest.u-ga.fr/item/1250271316/