$\Sigma^2H^3 = S^5/G$
Cannon, J.W.
Rocky Mountain J. Math., Tome 8 (1978) no. 4, p. 527-532 / Harvested from Project Euclid
Publié le : 1978-09-15
Classification:  Homology 3-spheres,  double suspension problem,  cellular upper semicontinuous decompositions,  generalized manifolds,  1-LCC approximations,  taming submanifolds,  surgery,  noncombinatorial triangulations,  cell-like embedding relations,  PL and TOP ribbons,  Rohlin invariant,  acyclic 4-manifold.,  57A15,  57C15,  57C25,  54B15,  54C10,  54C60,  57A10,  57A35,  57A40,  57A45,  57A50,  57A60,  57B99,  57D60,  57D65
@article{1250129560,
     author = {Cannon, J.W.},
     title = {$\Sigma^2H^3 = S^5/G$},
     journal = {Rocky Mountain J. Math.},
     volume = {8},
     number = {4},
     year = {1978},
     pages = { 527-532},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250129560}
}
Cannon, J.W. $\Sigma^2H^3 = S^5/G$. Rocky Mountain J. Math., Tome 8 (1978) no. 4, pp.  527-532. http://gdmltest.u-ga.fr/item/1250129560/