On unique extension of time changed reflecting Brownian motions
Chen, Zhen-Qing ; Fukushima, Masatoshi
Ann. Inst. H. Poincaré Probab. Statist., Tome 45 (2009) no. 1, p. 864-875 / Harvested from Project Euclid
Let D be an unbounded domain in ℝd with d≥3. We show that if D contains an unbounded uniform domain, then the symmetric reflecting Brownian motion (RBM) on ̅D is transient. Next assume that RBM X on ̅D is transient and let Y be its time change by Revuz measure 1D(x)m(x) dx for a strictly positive continuous integrable function m on ̅D. We further show that if there is some r>0 so that D∖̅B̅(̅0̅,̅ ̅r̅) is an unbounded uniform domain, then Y admits one and only one symmetric diffusion that genuinely extends it and admits no killings.
Publié le : 2009-08-15
Classification:  Reflecting Brownian motion,  Transience,  Time change,  Uniform domain,  Sobolev space,  BL function space,  Reflected Dirichlet space,  Harmonic function,  Diffusion extension,  60J50,  60J60
@article{1249391389,
     author = {Chen, Zhen-Qing and Fukushima, Masatoshi},
     title = {On unique extension of time changed reflecting Brownian motions},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {45},
     number = {1},
     year = {2009},
     pages = { 864-875},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1249391389}
}
Chen, Zhen-Qing; Fukushima, Masatoshi. On unique extension of time changed reflecting Brownian motions. Ann. Inst. H. Poincaré Probab. Statist., Tome 45 (2009) no. 1, pp.  864-875. http://gdmltest.u-ga.fr/item/1249391389/