Poisson convergence for the largest eigenvalues of heavy tailed random matrices
Auffinger, Antonio ; Ben Arous, Gérard ; Péché, Sandrine
Ann. Inst. H. Poincaré Probab. Statist., Tome 45 (2009) no. 1, p. 589-610 / Harvested from Project Euclid
We study the statistics of the largest eigenvalues of real symmetric and sample covariance matrices when the entries are heavy tailed. Extending the result obtained by Soshnikov in (Electron. Commun. Probab. 9 (2004) 82–91), we prove that, in the absence of the fourth moment, the asymptotic behavior of the top eigenvalues is determined by the behavior of the largest entries of the matrix.
Publié le : 2009-08-15
Classification:  Largest eigenvalues statistics,  Extreme values,  Random matrices,  Heavy tails,  15A52,  62G32,  60G55
@article{1249391376,
     author = {Auffinger, Antonio and Ben Arous, G\'erard and P\'ech\'e, Sandrine},
     title = {Poisson convergence for the largest eigenvalues of heavy tailed random matrices},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {45},
     number = {1},
     year = {2009},
     pages = { 589-610},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1249391376}
}
Auffinger, Antonio; Ben Arous, Gérard; Péché, Sandrine. Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. H. Poincaré Probab. Statist., Tome 45 (2009) no. 1, pp.  589-610. http://gdmltest.u-ga.fr/item/1249391376/