Long range scattering for the Maxwell-Schrödinger system with arbitrarily large asymptotic data
GINIBRE, J. ; VELO, G.
Hokkaido Math. J., Tome 37 (2008) no. 4, p. 795-811 / Harvested from Project Euclid
We review the proof of existence and uniqueness of solutions of the Maxwell-Schrödinger system in a neighborhood of infinity in time, with prescribed asymptotic behaviour defined in terms of asymptotic data, without any restriction on the size of those data. That result is the basic step in the construction of modified wave operators for the Maxwell-Schrödinger system.
Publié le : 2008-11-15
Classification:  long range scattering,  Maxwell-Schrödinger system,  35P25,  35B40,  35Q40
@article{1249046369,
     author = {GINIBRE, J. and VELO, G.},
     title = {Long range scattering for the Maxwell-Schr\"odinger system with arbitrarily large asymptotic data},
     journal = {Hokkaido Math. J.},
     volume = {37},
     number = {4},
     year = {2008},
     pages = { 795-811},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1249046369}
}
GINIBRE, J.; VELO, G. Long range scattering for the Maxwell-Schrödinger system with arbitrarily large asymptotic data. Hokkaido Math. J., Tome 37 (2008) no. 4, pp.  795-811. http://gdmltest.u-ga.fr/item/1249046369/