On unicity of meromorphic functions when two differential polynomials share one value
Meng, Chao
Hiroshima Math. J., Tome 39 (2009) no. 1, p. 163-179 / Harvested from Project Euclid
In this article, we deal with the uniqueness problems of meromorphic functions concerning differential polynomials and prove the following result: Let $f$ and $g$ be two nonconstant meromorphic functions and let $n(\geq 14)$ be an integer such that $n+1$ is not divisible by $3$. If $f^{n}(f^{3}-1)f'$ and $g^{n}(g^{3}-1)g'$ share $(1,2)$ or $``(1,2)"$, then $f\equiv g$. If $\overline{E}_{4)}(1,f^{n}(f^{3}-1)f')=\overline{E}_{4)}(1,g^{n}(g^{3}-1)g')$ and $E_{2)}(1,f^{n}(f^{3}-1)f')=E_{2)}(1,g^{n}(g^{3}-1)g')$, then $f\equiv g$.
Publié le : 2009-07-15
Classification:  Uniqueness,  meromorphic function,  differential polynomials,  30D35
@article{1249046335,
     author = {Meng, Chao},
     title = {On unicity of meromorphic functions when two differential polynomials share one
				value},
     journal = {Hiroshima Math. J.},
     volume = {39},
     number = {1},
     year = {2009},
     pages = { 163-179},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1249046335}
}
Meng, Chao. On unicity of meromorphic functions when two differential polynomials share one
				value. Hiroshima Math. J., Tome 39 (2009) no. 1, pp.  163-179. http://gdmltest.u-ga.fr/item/1249046335/