Sur le Cortex d'un groupe de Lie nilpotent
Kédim, Imed ; Hatem, Megdiche
J. Math. Kyoto Univ., Tome 49 (2009) no. 1, p. 161-172 / Harvested from Project Euclid
Let $G$ be a connected and simply connected, nilpotent Lie group. In this paper, we show that the cortex of $G$ is a semi-algebraic set by means of a geometric characterization. It is also shown that the cortex is the image under a linear projection of a countable union of a semi-algebraic sets lying in the tensor product $T$($\mathfrak{g}$)$\otimes$ $\mathfrak{g}$*.
Publié le : 2009-05-15
Classification:  22E27,  22G25
@article{1248983034,
     author = {K\'edim, Imed and Hatem, Megdiche},
     title = {Sur le Cortex d'un groupe de Lie nilpotent},
     journal = {J. Math. Kyoto Univ.},
     volume = {49},
     number = {1},
     year = {2009},
     pages = { 161-172},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/1248983034}
}
Kédim, Imed; Hatem, Megdiche. Sur le Cortex d'un groupe de Lie nilpotent. J. Math. Kyoto Univ., Tome 49 (2009) no. 1, pp.  161-172. http://gdmltest.u-ga.fr/item/1248983034/