Scattering length for stable processes
Siudeja, Bartłomiej
Illinois J. Math., Tome 52 (2008) no. 1, p. 667-680 / Harvested from Project Euclid
Let 0<α<2 and Xt be the isotropic α-stable Lévy process. We define scattering length Γ(v) of a positive potential v. We use the scattering length to find estimates for the first eigenvalue of the Schrödinger operator of the “Neumann” fractional Laplacian in a cube with a potential v.
Publié le : 2008-05-15
Classification:  60G52,  31C15
@article{1248355357,
     author = {Siudeja, Bart\l omiej},
     title = {Scattering length for stable processes},
     journal = {Illinois J. Math.},
     volume = {52},
     number = {1},
     year = {2008},
     pages = { 667-680},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1248355357}
}
Siudeja, Bartłomiej. Scattering length for stable processes. Illinois J. Math., Tome 52 (2008) no. 1, pp.  667-680. http://gdmltest.u-ga.fr/item/1248355357/