On some weighted norm inequalities for Littlewood–Paley operators
Lerner, Andrei K.
Illinois J. Math., Tome 52 (2008) no. 1, p. 653-666 / Harvested from Project Euclid
It is shown that the Lwp, 1Apγp, where $\gamma_{p}=\max\{1,p/2\}\frac {1}{p-1}$ . This improves previously known bounds for all p>2. As a corollary, a new estimate in terms of ‖w‖Ap is obtained for the class of Calderón–Zygmund singular integrals commuting with dilations.
Publié le : 2008-05-15
Classification:  42B20,  42B25
@article{1248355356,
     author = {Lerner, Andrei K.},
     title = {On some weighted norm inequalities for Littlewood--Paley operators},
     journal = {Illinois J. Math.},
     volume = {52},
     number = {1},
     year = {2008},
     pages = { 653-666},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1248355356}
}
Lerner, Andrei K. On some weighted norm inequalities for Littlewood–Paley operators. Illinois J. Math., Tome 52 (2008) no. 1, pp.  653-666. http://gdmltest.u-ga.fr/item/1248355356/