Loading [MathJax]/extensions/MathZoom.js
Definable smoothing of Lipschitz continuous functions
Fischer, Andreas
Illinois J. Math., Tome 52 (2008) no. 1, p. 583-590 / Harvested from Project Euclid
Let ${\mathcal {M}}$ be an o-minimal expansion of a real closed field. We prove the definable smoothing of definable Lipschitz continuous functions. In the case of Lipschitz functions of one variable, we are even able to preserve the Lipschitz constant.
Publié le : 2008-05-15
Classification:  03C64
@article{1248355351,
     author = {Fischer, Andreas},
     title = {Definable smoothing of Lipschitz continuous functions},
     journal = {Illinois J. Math.},
     volume = {52},
     number = {1},
     year = {2008},
     pages = { 583-590},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1248355351}
}
Fischer, Andreas. Definable smoothing of Lipschitz continuous functions. Illinois J. Math., Tome 52 (2008) no. 1, pp.  583-590. http://gdmltest.u-ga.fr/item/1248355351/