Spectral properties of the layer potentials on Lipschitz domains
Chang, TongKeun ; Lee, Kijung
Illinois J. Math., Tome 52 (2008) no. 1, p. 463-472 / Harvested from Project Euclid
We study the invertibility of the operator βI−K* in H−α(∂Ω), 0≤α≤1 for β∈C∖(−½, ½] where K* is a adjoint operator of the double layer potential K related to the Laplace equation and Ω is a bounded Lipschitz domain in Rn. Consequently, the spectrum on the real line lies in (−½, ½].
Publié le : 2008-05-15
Classification:  31B10,  45210
@article{1248355344,
     author = {Chang, TongKeun and Lee, Kijung},
     title = {Spectral properties of the layer potentials on Lipschitz domains},
     journal = {Illinois J. Math.},
     volume = {52},
     number = {1},
     year = {2008},
     pages = { 463-472},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1248355344}
}
Chang, TongKeun; Lee, Kijung. Spectral properties of the layer potentials on Lipschitz domains. Illinois J. Math., Tome 52 (2008) no. 1, pp.  463-472. http://gdmltest.u-ga.fr/item/1248355344/