The survival of large dimensional threshold contact processes
Mountford, Thomas ; Schonmann, Roberto H.
Ann. Probab., Tome 37 (2009) no. 1, p. 1483-1501 / Harvested from Project Euclid
We study the threshold θ contact process on ℤd with infection parameter λ. We show that the critical point λc, defined as the threshold for survival starting from every site occupied, vanishes as d→∞. This implies that the threshold θ voter model on ℤd has a nondegenerate extremal invariant measure, when d is large.
Publié le : 2009-07-15
Classification:  Threshold contact process,  threshold voter model,  critical points,  invariant measures,  large dimensions,  60K35
@article{1248182145,
     author = {Mountford, Thomas and Schonmann, Roberto H.},
     title = {The survival of large dimensional threshold contact processes},
     journal = {Ann. Probab.},
     volume = {37},
     number = {1},
     year = {2009},
     pages = { 1483-1501},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1248182145}
}
Mountford, Thomas; Schonmann, Roberto H. The survival of large dimensional threshold contact processes. Ann. Probab., Tome 37 (2009) no. 1, pp.  1483-1501. http://gdmltest.u-ga.fr/item/1248182145/