Noncentral convergence of multiple integrals
Nourdin, Ivan ; Peccati, Giovanni
Ann. Probab., Tome 37 (2009) no. 1, p. 1412-1426 / Harvested from Project Euclid
Fix ν>0, denote by G(ν/2) a Gamma random variable with parameter ν/2 and let n≥2 be a fixed even integer. Consider a sequence {Fk}k≥1 of square integrable random variables belonging to the nth Wiener chaos of a given Gaussian process and with variance converging to 2ν. As k→∞, we prove that Fk converges in distribution to 2G(ν/2)−ν if and only if E(Fk4)−12E(Fk3)→12ν2−48ν.
Publié le : 2009-07-15
Classification:  Gaussian processes,  Malliavin calculus,  multiple stochastic integrals,  noncentral limit theorems,  weak convergence,  60F05,  60G15,  60H05,  60H07
@article{1248182142,
     author = {Nourdin, Ivan and Peccati, Giovanni},
     title = {Noncentral convergence of multiple integrals},
     journal = {Ann. Probab.},
     volume = {37},
     number = {1},
     year = {2009},
     pages = { 1412-1426},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1248182142}
}
Nourdin, Ivan; Peccati, Giovanni. Noncentral convergence of multiple integrals. Ann. Probab., Tome 37 (2009) no. 1, pp.  1412-1426. http://gdmltest.u-ga.fr/item/1248182142/