Smooth projective toric varieties whose nontrivial nef line bundles are big
Fujino, Osamu ; Sato, Hiroshi
Proc. Japan Acad. Ser. A Math. Sci., Tome 85 (2009) no. 2, p. 89-94 / Harvested from Project Euclid
For any $n\geq 3$, we explicitly construct smooth projective toric $n$-folds of Picard number $\geq 5$, where any nontrivial nef line bundles are big.
Publié le : 2009-07-15
Classification:  Toric variety,  Mori theory,  nef cone,  pseudo-effective cone,  14M25,  14E30
@article{1247849907,
     author = {Fujino, Osamu and Sato, Hiroshi},
     title = {Smooth projective toric varieties whose nontrivial nef line bundles are big},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {85},
     number = {2},
     year = {2009},
     pages = { 89-94},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1247849907}
}
Fujino, Osamu; Sato, Hiroshi. Smooth projective toric varieties whose nontrivial nef line bundles are big. Proc. Japan Acad. Ser. A Math. Sci., Tome 85 (2009) no. 2, pp.  89-94. http://gdmltest.u-ga.fr/item/1247849907/