Estimating linear functionals in nonlinear regression with responses missing at random
Müller, Ursula U.
Ann. Statist., Tome 37 (2009) no. 1, p. 2245-2277 / Harvested from Project Euclid
We consider regression models with parametric (linear or nonlinear) regression function and allow responses to be “missing at random.” We assume that the errors have mean zero and are independent of the covariates. In order to estimate expectations of functions of covariate and response we use a fully imputed estimator, namely an empirical estimator based on estimators of conditional expectations given the covariate. We exploit the independence of covariates and errors by writing the conditional expectations as unconditional expectations, which can now be estimated by empirical plug-in estimators. The mean zero constraint on the error distribution is exploited by adding suitable residual-based weights. We prove that the estimator is efficient (in the sense of Hájek and Le Cam) if an efficient estimator of the parameter is used. Our results give rise to new efficient estimators of smooth transformations of expectations. Estimation of the mean response is discussed as a special (degenerate) case.
Publié le : 2009-10-15
Classification:  Semiparametric regression,  weighted empirical estimator,  empirical likelihood,  influence function,  gradient,  confidence interval,  62J02,  62N01,  62F12,  62G20
@article{1247663754,
     author = {M\"uller, Ursula U.},
     title = {Estimating linear functionals in nonlinear regression with responses missing at random},
     journal = {Ann. Statist.},
     volume = {37},
     number = {1},
     year = {2009},
     pages = { 2245-2277},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1247663754}
}
Müller, Ursula U. Estimating linear functionals in nonlinear regression with responses missing at random. Ann. Statist., Tome 37 (2009) no. 1, pp.  2245-2277. http://gdmltest.u-ga.fr/item/1247663754/