Local Regularity Results for Second Order Elliptic Systems on Lipschitz Domains
Mitrea, Marius ; Taylor, Michael
Funct. Approx. Comment. Math., Tome 40 (2009) no. 1, p. 175-184 / Harvested from Project Euclid
For a class of strongly elliptic, second order systems $L$ with rough coefficients on a Lipschitz domain $\Omega$, we show that if $Lu=0$ on $\Omega$ and $u$ vanishes on an open subset of the boundary, then weak a priori hypotheses on the nontangential maximal function of $u$ lead to strong estimates on $\nabla u$, in nontangential and Besov norms, near this subset.
Publié le : 2009-06-15
Classification:  Second order elliptic PDE,  Sobolev Besov spaces,  boundary regularity,  Lipschitz domains,  35J55,  35B65,  46E35,  31B25
@article{1246454027,
     author = {Mitrea, Marius and Taylor, Michael},
     title = {Local Regularity Results for Second Order Elliptic Systems on Lipschitz Domains},
     journal = {Funct. Approx. Comment. Math.},
     volume = {40},
     number = {1},
     year = {2009},
     pages = { 175-184},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1246454027}
}
Mitrea, Marius; Taylor, Michael. Local Regularity Results for Second Order Elliptic Systems on Lipschitz Domains. Funct. Approx. Comment. Math., Tome 40 (2009) no. 1, pp.  175-184. http://gdmltest.u-ga.fr/item/1246454027/