Reflection principle for quasiminimizers
Martio, Olli
Funct. Approx. Comment. Math., Tome 40 (2009) no. 1, p. 165-173 / Harvested from Project Euclid
It is shown that the reflection principle holds for $K$--quasiminimizers in $\mathbb{R}^n$, $n \geq 2$, provided that $K \in [1, 2)$. For $n = 1$ the principle holds for all $K \geq 1$ and an example shows that $K$ is not preserved in the reflection process. A local integrability result up to the boundary is proved for the derivative of a quasiminimizer in $\mathbb{R}^n$, $n \geq 1$; the result is needed for the reflection principle.
Publié le : 2009-06-15
Classification:  quasilinear elliptic equation,  reflection principle,  the Sobolev space,  quasiminimizer,  31B25,  35J65
@article{1246454026,
     author = {Martio, Olli},
     title = {Reflection principle for quasiminimizers},
     journal = {Funct. Approx. Comment. Math.},
     volume = {40},
     number = {1},
     year = {2009},
     pages = { 165-173},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1246454026}
}
Martio, Olli. Reflection principle for quasiminimizers. Funct. Approx. Comment. Math., Tome 40 (2009) no. 1, pp.  165-173. http://gdmltest.u-ga.fr/item/1246454026/