Spectral asymptotics for arithmetic quotients of ${\rm SL}(n,{\mathbb R})/\rm{SO}(n)$
Lapid, Erez ; Müller, Werner
Duke Math. J., Tome 146 (2009) no. 1, p. 117-155 / Harvested from Project Euclid
In this article we study the asymptotic distribution of the cuspidal spectrum of arithmetic quotients of the symmetric space ${\rm SL}(n,{\mathbb R})/\operatorname{SO}(n)$ . In particular, we obtain Weyl's law with an estimation on the remainder term. This extends some of the main results of Duistermaat, Kolk, and Varadarajan ([DKV1]) to this setting
Publié le : 2009-07-15
Classification:  11F70,  11F72
@article{1246453790,
     author = {Lapid, Erez and M\"uller, Werner},
     title = {Spectral asymptotics for arithmetic quotients of ${\rm SL}(n,{\mathbb R})/\rm{SO}(n)$},
     journal = {Duke Math. J.},
     volume = {146},
     number = {1},
     year = {2009},
     pages = { 117-155},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1246453790}
}
Lapid, Erez; Müller, Werner. Spectral asymptotics for arithmetic quotients of ${\rm SL}(n,{\mathbb R})/\rm{SO}(n)$. Duke Math. J., Tome 146 (2009) no. 1, pp.  117-155. http://gdmltest.u-ga.fr/item/1246453790/