Survival and coexistence for a multitype contact process
Cox, J. Theodore ; Schinazi, Rinaldo B.
Ann. Probab., Tome 37 (2009) no. 1, p. 853-876 / Harvested from Project Euclid
We study the ergodic theory of a multitype contact process with equal death rates and unequal birth rates on the d-dimensional integer lattice and regular trees. We prove that for birth rates in a certain interval there is coexistence on the tree, which by a result of Neuhauser is not possible on the lattice. We also prove a complete convergence result when the larger birth rate falls outside of this interval.
Publié le : 2009-05-15
Classification:  Contact process,  trees,  multitype,  survival,  coexistence,  complete convergence,  60K35,  60G57,  60F05,  60J80
@article{1245434022,
     author = {Cox, J. Theodore and Schinazi, Rinaldo B.},
     title = {Survival and coexistence for a multitype contact process},
     journal = {Ann. Probab.},
     volume = {37},
     number = {1},
     year = {2009},
     pages = { 853-876},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1245434022}
}
Cox, J. Theodore; Schinazi, Rinaldo B. Survival and coexistence for a multitype contact process. Ann. Probab., Tome 37 (2009) no. 1, pp.  853-876. http://gdmltest.u-ga.fr/item/1245434022/