The structure of algebraic embeddings of $\mathbb{C}^{2}$ into $\mathbb{C}^{3}$ (the normal quartic hypersurface case. II)
Ohta, Tomoaki
Osaka J. Math., Tome 46 (2009) no. 1, p. 563-597 / Harvested from Project Euclid
We obtain the affirmative answer for a special case of the linearization problem for algebraic embeddings of $\mathbb{C}^{2}$ into $\mathbb{C}^{3}$. Indeed, we determine all the compactifications $(X,Y)$ of $\mathbb{C}^{2}$ such that $X$ are normal quartic hypersurfaces in $\mathbb{P}^{3}$ without triple points and $Y$ are hyperplane sections of $X$. Moreover, for each $(X,Y)$, we construct a tame automorphism of $\mathbb{C}^{3}$ which transforms the hypersurface $X\setminus Y$ onto a coordinate hyperplane.
Publié le : 2009-06-15
Classification:  14R10,  32J05
@article{1245415685,
     author = {Ohta, Tomoaki},
     title = {The structure of algebraic embeddings of $\mathbb{C}^{2}$ into $\mathbb{C}^{3}$ (the normal quartic hypersurface case. II)},
     journal = {Osaka J. Math.},
     volume = {46},
     number = {1},
     year = {2009},
     pages = { 563-597},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1245415685}
}
Ohta, Tomoaki. The structure of algebraic embeddings of $\mathbb{C}^{2}$ into $\mathbb{C}^{3}$ (the normal quartic hypersurface case. II). Osaka J. Math., Tome 46 (2009) no. 1, pp.  563-597. http://gdmltest.u-ga.fr/item/1245415685/