Equivariant $K$ -theory of affine flag manifolds and affine Grothendieck polynomials
Kashiwara, Masaki ; Shimozono, Mark
Duke Math. J., Tome 146 (2009) no. 1, p. 501-538 / Harvested from Project Euclid
We study the equivariant $K$ -group of the affine flag manifold with respect to the Borel group action. We prove that the structure sheaf of the (infinite-dimensional) Schubert variety in the K-group is represented by a unique polynomial, which we call the affine Grothendieck polynomial
Publié le : 2009-06-15
Classification:  19L47,  14M17,  17B67,  22E65
@article{1245350755,
     author = {Kashiwara, Masaki and Shimozono, Mark},
     title = {Equivariant $K$ -theory of affine flag manifolds and affine Grothendieck polynomials},
     journal = {Duke Math. J.},
     volume = {146},
     number = {1},
     year = {2009},
     pages = { 501-538},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1245350755}
}
Kashiwara, Masaki; Shimozono, Mark. Equivariant $K$ -theory of affine flag manifolds and affine Grothendieck polynomials. Duke Math. J., Tome 146 (2009) no. 1, pp.  501-538. http://gdmltest.u-ga.fr/item/1245350755/