Gaussian perturbations of circle maps: A spectral approach
Mayberry, John
Ann. Appl. Probab., Tome 19 (2009) no. 1, p. 1143-1171 / Harvested from Project Euclid
In this work, we examine spectral properties of Markov transition operators corresponding to Gaussian perturbations of discrete time dynamical systems on the circle. We develop a method for calculating asymptotic expressions for eigenvalues (in the zero noise limit) and show that changes to the number or period of stable orbits for the deterministic system correspond to changes in the number of limiting modulus 1 eigenvalues of the transition operator for the perturbed process. We call this phenomenon a λ-bifurcation. Asymptotic expressions for the corresponding eigenfunctions and eigenmeasures are also derived and are related to Hermite functions.
Publié le : 2009-06-15
Classification:  Random perturbations,  Markov chains,  transition operators,  stochastic bifurcations,  integrate-and-fire models,  eigenvalues,  pseudospectra,  60J05,  37H20,  47A55
@article{1245071022,
     author = {Mayberry, John},
     title = {Gaussian perturbations of circle maps: A spectral approach},
     journal = {Ann. Appl. Probab.},
     volume = {19},
     number = {1},
     year = {2009},
     pages = { 1143-1171},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1245071022}
}
Mayberry, John. Gaussian perturbations of circle maps: A spectral approach. Ann. Appl. Probab., Tome 19 (2009) no. 1, pp.  1143-1171. http://gdmltest.u-ga.fr/item/1245071022/