Effective resistance of random trees
Addario-Berry, Louigi ; Broutin, Nicolas ; Lugosi, Gábor
Ann. Appl. Probab., Tome 19 (2009) no. 1, p. 1092-1107 / Harvested from Project Euclid
We investigate the effective resistance Rn and conductance Cn between the root and leaves of a binary tree of height n. In this electrical network, the resistance of each edge e at distance d from the root is defined by re=2dXe where the Xe are i.i.d. positive random variables bounded away from zero and infinity. It is shown that ERn=nEXe−(Var (Xe)/EXe)ln n+O(1) and Var (Rn)=O(1). Moreover, we establish sub-Gaussian tail bounds for Rn. We also discuss some possible extensions to supercritical Galton–Watson trees.
Publié le : 2009-06-15
Classification:  Random trees,  electrical networks,  Efron–Stein inequality,  60J45,  31C20
@article{1245071020,
     author = {Addario-Berry, Louigi and Broutin, Nicolas and Lugosi, G\'abor},
     title = {Effective resistance of random trees},
     journal = {Ann. Appl. Probab.},
     volume = {19},
     number = {1},
     year = {2009},
     pages = { 1092-1107},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1245071020}
}
Addario-Berry, Louigi; Broutin, Nicolas; Lugosi, Gábor. Effective resistance of random trees. Ann. Appl. Probab., Tome 19 (2009) no. 1, pp.  1092-1107. http://gdmltest.u-ga.fr/item/1245071020/