A Kaplansky-Meyer theorem for subalgebras
Oubbi, L.
Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, p. 305-312 / Harvested from Project Euclid
In this note we show that, for an arbitrary Hausdorff locally m-convex topology on a subalgebra $A$ of the algebra $C(X)$, the boundedness radius $\beta$ is nothing but the uniform norm, whenever $A$ is a $C_b(X)$-module and closed under the complex conjugation. We then deduce a Theorem of Kaplansky-Meyer type for subalgebras.
Publié le : 2009-05-15
Classification:  Continuous function algebra,  Boundedness radius,  locally multiplicatively convex topology,  algebra norms in $C(X)$,  46H05,  46J20,  46J40,  46J45
@article{1244038141,
     author = {Oubbi, L.},
     title = {A Kaplansky-Meyer theorem for subalgebras},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {16},
     number = {1},
     year = {2009},
     pages = { 305-312},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1244038141}
}
Oubbi, L. A Kaplansky-Meyer theorem for subalgebras. Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, pp.  305-312. http://gdmltest.u-ga.fr/item/1244038141/