Numerical quenching for a nonlinear diffusion equation with a singular boundary condition
Nabongo, Diabate ; Boni, Théodore K.
Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, p. 289-303 / Harvested from Project Euclid
This paper concerns the study of the numerical approximation for the following boundary value problem $$ \left\{ \begin{array}{ll} \hbox{$(u^{m})_{t}=u_{xx}$, $0$,} \\ \hbox{$u_{x}(0,t)=0$,\quad $u_{x}(1,t)=-u^{-\beta}(1,t)$,\quad $t>0$,} \\ \hbox{$u(x,0)=u_{0}(x)>0$,\quad $0\leq x\leq 1$,} \\ \end{array} \right.$$ where $m\geq1$, $\beta>0$. We obtain some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time. Finally, we give some numerical experiments to illustrate our analysis.
Publié le : 2009-05-15
Classification:  Semidiscretizations,  nonlinear diffusion equation,  singular boundary condition,  quenching,  semidiscrete quenching time,  convergence,  35B40,  35B50,  35K60,  65M06
@article{1244038140,
     author = {Nabongo, Diabate and Boni, Th\'eodore K.},
     title = {Numerical quenching for a nonlinear diffusion equation with a singular boundary condition},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {16},
     number = {1},
     year = {2009},
     pages = { 289-303},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1244038140}
}
Nabongo, Diabate; Boni, Théodore K. Numerical quenching for a nonlinear diffusion equation with a singular boundary condition. Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, pp.  289-303. http://gdmltest.u-ga.fr/item/1244038140/