Low-Degree Cohomology of Integral Specht Modules
Weber, Christian
Experiment. Math., Tome 18 (2009) no. 1, p. 85-96 / Harvested from Project Euclid
We introduce a way of describing cohomology of the symmetric groups $\Sig n$ with coefficients in Specht modules. We study $\HlR i$ for $i \in \{0,1,2\}$ and $R = \Z$, $\Fp$. The focus lies on the isomorphism type of $\Hlz 2$. Unfortunately, only in few cases can we determine this exactly. In many cases we obtain only some information about the prime divisors of $|\Hlz 2|$. The most important tools we use are the Zassenhaus algorithm, the branching rules, Bockstein-type homomorphisms, and the results from Burichenko et al., 1996.
Publié le : 2009-05-15
Classification:  Cohomology,  symmetric groups,  Specht module,  Bockstein homomorphism,  Zassenhaus algorithm,  20J06,  20C30,  20C10
@article{1243430532,
     author = {Weber, Christian},
     title = {Low-Degree Cohomology of Integral Specht Modules},
     journal = {Experiment. Math.},
     volume = {18},
     number = {1},
     year = {2009},
     pages = { 85-96},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1243430532}
}
Weber, Christian. Low-Degree Cohomology of Integral Specht Modules. Experiment. Math., Tome 18 (2009) no. 1, pp.  85-96. http://gdmltest.u-ga.fr/item/1243430532/