Computing Central Values of Twisted $L$-Series: The Case of Composite Levels
Pacetti, Ariel ; Tornaría, Gonzalo
Experiment. Math., Tome 17 (2008) no. 1, p. 459-472 / Harvested from Project Euclid
We describe a general method to compute weight-$\frac32$ modular forms ``associated'' with a given weight-$2$ modular form $f$ of level $N$, and relate its Fourier coefficients to central values of quadratic twists (real and imaginary) of $L(f,s)$. We will focus on examples for levels $N = 27$, $N = 15$, and $N=75$.
Publié le : 2008-05-15
Classification:  Shimura correspondence,  $L$-series,  quadratic twists,  11F37,  11F67
@article{1243429959,
     author = {Pacetti, Ariel and Tornar\'\i a, Gonzalo},
     title = {Computing Central Values of Twisted $L$-Series: The Case of Composite Levels},
     journal = {Experiment. Math.},
     volume = {17},
     number = {1},
     year = {2008},
     pages = { 459-472},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1243429959}
}
Pacetti, Ariel; Tornaría, Gonzalo. Computing Central Values of Twisted $L$-Series: The Case of Composite Levels. Experiment. Math., Tome 17 (2008) no. 1, pp.  459-472. http://gdmltest.u-ga.fr/item/1243429959/