On the Absolute Trace of Polynomials Having All Zeros in a Sector
Flammang, V.
Experiment. Math., Tome 17 (2008) no. 1, p. 443-450 / Harvested from Project Euclid
Let $\alpha$ be an algebraic integer all of whose conjugates lie in a sector $ | \operatorname{arg {\ z | \leq \theta$} with $ 0 \leq \theta <90^\circ$. Using the method of explicit auxiliary functions, we compute the greatest lower bound $v(\theta)$ of the absolute trace of $\alpha$, for $\theta$ belonging to seven subintervals of $[0,90^\circ)$. The polynomials involved in the auxiliary functions are found by Wu's algorithm.
Publié le : 2008-05-15
Classification:  Algebraic integer,  trace,  explicit auxiliary functions,  integer transfinite diameter,  11R04,  11Y40,  12D10
@article{1243429957,
     author = {Flammang, V.},
     title = {On the Absolute Trace of Polynomials Having All Zeros in a Sector},
     journal = {Experiment. Math.},
     volume = {17},
     number = {1},
     year = {2008},
     pages = { 443-450},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1243429957}
}
Flammang, V. On the Absolute Trace of Polynomials Having All Zeros in a Sector. Experiment. Math., Tome 17 (2008) no. 1, pp.  443-450. http://gdmltest.u-ga.fr/item/1243429957/