When Can $(((X^2-P)^2-Q)^2-R)^2-S^2$ Split into Linear Factors?
Bremmer, Andrew
Experiment. Math., Tome 17 (2008) no. 1, p. 385-390 / Harvested from Project Euclid
We discover two infinite families of integers $(P,Q,R,S)$ such that the polynomial $(((X^2-P)^2-Q)^2-R)^2-S^2$ factors into linear factors.
Publié le : 2008-05-15
Classification:  Nested squares,  elliptic curve,  11D41,  11G05,  11G35,  11Y50
@article{1243429952,
     author = {Bremmer, Andrew},
     title = {When Can $(((X^2-P)^2-Q)^2-R)^2-S^2$ Split into Linear Factors?},
     journal = {Experiment. Math.},
     volume = {17},
     number = {1},
     year = {2008},
     pages = { 385-390},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1243429952}
}
Bremmer, Andrew. When Can $(((X^2-P)^2-Q)^2-R)^2-S^2$ Split into Linear Factors?. Experiment. Math., Tome 17 (2008) no. 1, pp.  385-390. http://gdmltest.u-ga.fr/item/1243429952/