An exotic Deligne-Langlands correspondence for symplectic groups
Kato, Syu
Duke Math. J., Tome 146 (2009) no. 1, p. 305-371 / Harvested from Project Euclid
Let $G = \mathop{\rm Sp} (2n, \mathbb C)$ be a complex symplectic group. We introduce a ( $G \times (\mathbb C ^{\times})^{\ell + 1}$ )-variety $\mathfrak N_{\ell}$ , which we call the $\ell$ -exotic nilpotent cone. Then, we realize the Hecke algebra $\mathbb H$ of type $C_{n}^{(1)}$ with three parameters via equivariant algebraic $K$ -theory in terms of the geometry of $\mathfrak N_2$ . This enables us to establish a Deligne-Langlands–type classification of simple $\mathbb H$ -modules under a mild assumption on parameters. As applications, we present a character formula and multiplicity formulas of $\mathbb H$ -modules
Publié le : 2009-06-01
Classification:  20G99
@article{1242998669,
     author = {Kato, Syu},
     title = {An exotic Deligne-Langlands correspondence for symplectic groups},
     journal = {Duke Math. J.},
     volume = {146},
     number = {1},
     year = {2009},
     pages = { 305-371},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1242998669}
}
Kato, Syu. An exotic Deligne-Langlands correspondence for symplectic groups. Duke Math. J., Tome 146 (2009) no. 1, pp.  305-371. http://gdmltest.u-ga.fr/item/1242998669/