Poisson–Voronoi approximation
Heveling, Matthias ; Reitzner, Matthias
Ann. Appl. Probab., Tome 19 (2009) no. 1, p. 719-736 / Harvested from Project Euclid
Let X be a Poisson point process and K⊂ℝd a measurable set. Construct the Voronoi cells of all points x∈X with respect to X, and denote by vX(K) the union of all Voronoi cells with nucleus in K. For K a compact convex set the expectation of the volume difference V(vX(K))−V(K) and the symmetric difference V(vX(K)ΔK) is computed. Precise estimates for the variance of both quantities are obtained which follow from a new jackknife inequality for the variance of functionals of a Poisson point process. Concentration inequalities for both quantities are proved using Azuma’s inequality.
Publié le : 2009-04-15
Classification:  Poisson point process,  Poisson–Voronoi cell,  jackknife estimate of variance,  approximation of convex sets,  valuation,  60D05,  60G55,  52A22,  60C05
@article{1241702248,
     author = {Heveling, Matthias and Reitzner, Matthias},
     title = {Poisson--Voronoi approximation},
     journal = {Ann. Appl. Probab.},
     volume = {19},
     number = {1},
     year = {2009},
     pages = { 719-736},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1241702248}
}
Heveling, Matthias; Reitzner, Matthias. Poisson–Voronoi approximation. Ann. Appl. Probab., Tome 19 (2009) no. 1, pp.  719-736. http://gdmltest.u-ga.fr/item/1241702248/