We study the zero-range process on the complete graph. It is a Markov chain model for a microcanonical ensemble. We prove that the process converges to a fluid limit. The fluid limit rapidly relaxes to the appropriate Gibbs distribution.
Publié le : 2009-04-15
Classification:
Mean field,
zero-range process,
balls,
boxes,
Markov chain,
relaxation,
spectral gap,
log Sobolev,
60K35,
82C20
@article{1241702239,
author = {Graham, Benjamin T.},
title = {Rate of relaxation for a mean-field zero-range process},
journal = {Ann. Appl. Probab.},
volume = {19},
number = {1},
year = {2009},
pages = { 497-520},
language = {en},
url = {http://dml.mathdoc.fr/item/1241702239}
}
Graham, Benjamin T. Rate of relaxation for a mean-field zero-range process. Ann. Appl. Probab., Tome 19 (2009) no. 1, pp. 497-520. http://gdmltest.u-ga.fr/item/1241702239/