Rate of relaxation for a mean-field zero-range process
Graham, Benjamin T.
Ann. Appl. Probab., Tome 19 (2009) no. 1, p. 497-520 / Harvested from Project Euclid
We study the zero-range process on the complete graph. It is a Markov chain model for a microcanonical ensemble. We prove that the process converges to a fluid limit. The fluid limit rapidly relaxes to the appropriate Gibbs distribution.
Publié le : 2009-04-15
Classification:  Mean field,  zero-range process,  balls,  boxes,  Markov chain,  relaxation,  spectral gap,  log Sobolev,  60K35,  82C20
@article{1241702239,
     author = {Graham, Benjamin T.},
     title = {Rate of relaxation for a mean-field zero-range process},
     journal = {Ann. Appl. Probab.},
     volume = {19},
     number = {1},
     year = {2009},
     pages = { 497-520},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1241702239}
}
Graham, Benjamin T. Rate of relaxation for a mean-field zero-range process. Ann. Appl. Probab., Tome 19 (2009) no. 1, pp.  497-520. http://gdmltest.u-ga.fr/item/1241702239/