Robot navigation over large areas inevitably has to rely on maps of the environment.
The standard manner in which such maps are defined is through geometry, e.g. through traversability
grid maps or through a division of the environment into free-space and obstacle-space. In this paper,
we combine certain aspects of the geometric maps, through the notion of distinctive places, with a
topological description of how these places are related. What is novel is the idea that the adjacency
relation is defined by the existence of a control law that drives the robot between topologically
connected places. Moreover, these maps can be automatically constructed based on the premise that
the nodes correspond to places associated with a hightened control activity.