Limit distribution theory for maximum likelihood estimation of a log-concave density
Balabdaoui, Fadoua ; Rufibach, Kaspar ; Wellner, Jon A.
Ann. Statist., Tome 37 (2009) no. 1, p. 1299-1331 / Harvested from Project Euclid
We find limiting distributions of the nonparametric maximum likelihood estimator (MLE) of a log-concave density, that is, a density of the form f0=exp ϕ0 where ϕ0 is a concave function on ℝ. The pointwise limiting distributions depend on the second and third derivatives at 0 of Hk, the “lower invelope” of an integrated Brownian motion process minus a drift term depending on the number of vanishing derivatives of ϕ0=log f0 at the point of interest. We also establish the limiting distribution of the resulting estimator of the mode M(f0) and establish a new local asymptotic minimax lower bound which shows the optimality of our mode estimator in terms of both rate of convergence and dependence of constants on population values.
Publié le : 2009-06-15
Classification:  Asymptotic distribution,  integral of Brownian motion,  invelope process,  log-concave density estimation,  lower bounds,  maximum likelihood,  mode estimation,  nonparametric estimation,  qualitative assumptions,  shape constraints,  strongly unimodal,  unimodal,  62N01,  62G20,  62G05
@article{1239369023,
     author = {Balabdaoui, Fadoua and Rufibach, Kaspar and Wellner, Jon A.},
     title = {Limit distribution theory for maximum likelihood estimation of a log-concave density},
     journal = {Ann. Statist.},
     volume = {37},
     number = {1},
     year = {2009},
     pages = { 1299-1331},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1239369023}
}
Balabdaoui, Fadoua; Rufibach, Kaspar; Wellner, Jon A. Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist., Tome 37 (2009) no. 1, pp.  1299-1331. http://gdmltest.u-ga.fr/item/1239369023/