This paper discusses the Lagrange interpolation problem in continuous bivariate
spline spaces over regular triangulations. By using the so-called Lagrange interpolation set along
piecewise algebraic curves, we develop a new approach of constructing the interpolation set for
continuous spline spaces. We show the property of this set on star region, and construct the interpo-
lation set for continuous bivariate spline spaces over arbitrary triangulations. The construction only
depends on the number of points on the piecewise algebraic curve in each cell.
Publié le : 2009-03-15
Classification:
Bivariate spline,
Lagrange interpolation set,
linear piecewise algebraic curve,
interpolation set along piecewise algebraic curves,
41A05,
41A15,
41A63,
65D05,
65D07
@article{1238158610,
author = {Wang, Ren-Hong and Wang, Shao-Fan},
title = {Lagrange interpolation set along linear piecewise algebraic curves},
journal = {Commun. Math. Sci.},
volume = {7},
number = {1},
year = {2009},
pages = { 165-174},
language = {en},
url = {http://dml.mathdoc.fr/item/1238158610}
}
Wang, Ren-Hong; Wang, Shao-Fan. Lagrange interpolation set along linear piecewise algebraic curves. Commun. Math. Sci., Tome 7 (2009) no. 1, pp. 165-174. http://gdmltest.u-ga.fr/item/1238158610/