We give algorithms to compute a function $F$ on $\mathbb R^n$, having
prescribed Taylor polynomials (or taking prescribed values) at $N$
given points, with the $C^m$-norm of $F$ close to least possible.
@article{1236864107,
author = {Fefferman
,
Charles},
title = {The $C^m$ Norm of a Function with Prescribed Jets II},
journal = {Rev. Mat. Iberoamericana},
volume = {25},
number = {1},
year = {2009},
pages = { 275-421},
language = {en},
url = {http://dml.mathdoc.fr/item/1236864107}
}
Fefferman
,
Charles. The $C^m$ Norm of a Function with Prescribed Jets II. Rev. Mat. Iberoamericana, Tome 25 (2009) no. 1, pp. 275-421. http://gdmltest.u-ga.fr/item/1236864107/