Extension of $C^{m, \omega}$-Smooth Functions by Linear Operators
Rev. Mat. Iberoamericana, Tome 25 (2009) no. 1, p. 1-48 / Harvested from Project Euclid
Let $C^{m, \omega} ( \mathbb{R}^n)$ be the space of functions on $\mathbb{R}^n$ whose $m^{\sf th}$ derivatives have modulus of continuity $\omega$. For $E \subset \mathbb{R}^n$, let $C^{m , \omega} (E)$ be the space of all restrictions to $E$ of functions in $C^{m , \omega} ( \mathbb{R}^n)$. We show that there exists a bounded linear operator $T: C^{m , \omega} ( E ) \rightarrow C^{m , \omega } ( \mathbb{R}^n)$ such that, for any $f \in C^{m , \omega} ( E )$, we have $T f = f$ on $E$.
Publié le : 2009-03-15
Classification:  Whitney extension problem,  linear operators,  modulus of continuity,  Whitney convexity,  65D05,  65D17
@article{1236864105,
     author = {Fefferman
,  
Charles},
     title = {Extension of $C^{m, \omega}$-Smooth Functions by Linear Operators},
     journal = {Rev. Mat. Iberoamericana},
     volume = {25},
     number = {1},
     year = {2009},
     pages = { 1-48},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1236864105}
}
Fefferman
,  
Charles. Extension of $C^{m, \omega}$-Smooth Functions by Linear Operators. Rev. Mat. Iberoamericana, Tome 25 (2009) no. 1, pp.  1-48. http://gdmltest.u-ga.fr/item/1236864105/