The mean curvature flow for isoparametric submanifolds
Liu, Xiaobo ; Terng, Chuu-Lian
Duke Math. J., Tome 146 (2009) no. 1, p. 157-179 / Harvested from Project Euclid
A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and sphere. We show that the mean curvature flow preserves the isoparametric condition, develops singularities in finite time, and converges in finite time to a smooth submanifold of lower dimension. We also give a precise description of the collapsing
Publié le : 2009-03-15
Classification:  53C21,  58J35
@article{1235657191,
     author = {Liu, Xiaobo and Terng, Chuu-Lian},
     title = {The mean curvature flow for isoparametric submanifolds},
     journal = {Duke Math. J.},
     volume = {146},
     number = {1},
     year = {2009},
     pages = { 157-179},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1235657191}
}
Liu, Xiaobo; Terng, Chuu-Lian. The mean curvature flow for isoparametric submanifolds. Duke Math. J., Tome 146 (2009) no. 1, pp.  157-179. http://gdmltest.u-ga.fr/item/1235657191/