Optimal Strategies for Symmetric Matrix Games with Partitions
De Schuymer, Bart ; De Meyer, Hans ; De Baets, Bernard
Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, p. 67-89 / Harvested from Project Euclid
We introduce three variants of a symmetric matrix game corresponding to three ways of comparing two partitions of a fixed integer ($\sigma$) into a fixed number ($n$) of parts. In the random variable interpretation of the game, each variant depends on the choice of a copula that binds the marginal uniform cumulative distribution functions (cdf) into the bivariate cdf. The three copulas considered are the product copula $T_{\bf P}$ and the two extreme copulas, i.e. the minimum copula $T_{\bf M}$ and the Łukasiewicz copula $T_{\bf L}$. The associated games are denoted as the $(n,\sigma)_{\bf P}$, $(n,\sigma)_{\bf M}$ and $(n,\sigma)_{\bf L}$ games. In the present paper, we characterize the optimal strategies of the $(n,\sigma)_{\bf M}$ and $(n,\sigma)_{\bf L}$ games and compare them to the optimal strategies of the $(n,\sigma)_{\bf P}$ games. It turns out that the characterization of the optimal strategies is completely different for each game variant.
Publié le : 2009-02-15
Classification:  Matrix game,  Optimal strategy,  Partition theory,  Copula,  Probabilistic relation
@article{1235574193,
     author = {De Schuymer, Bart and De Meyer, Hans and De Baets, Bernard},
     title = {Optimal Strategies for Symmetric Matrix Games with Partitions},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {16},
     number = {1},
     year = {2009},
     pages = { 67-89},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1235574193}
}
De Schuymer, Bart; De Meyer, Hans; De Baets, Bernard. Optimal Strategies for Symmetric Matrix Games with Partitions. Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, pp.  67-89. http://gdmltest.u-ga.fr/item/1235574193/