On the positive solutions of certain semi-linear elliptic equations
Agarwal, Ravi P. ; Mustafa, Octavian G. ; Popescu, Liviu
Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, p. 49-57 / Harvested from Project Euclid
We establish that the elliptic equation $\Delta u+f(x,u)+g(|x|)x\cdot \nabla u=0$, where $x\in\mathbb{R}^{n}$, $n\geq3$, and $|x| >A>0$, has a positive solution which decays to $0$ as $|x|\rightarrow +\infty$ under mild restrictions on the functions $f,g$. The main theorem improves substantially upon the conclusions of the recent paper [M. Ehrnström, Positive solutions for second-order nonlinear differential equations, Nonlinear Anal. TMA 64 (2006), 1608--1620]. Its proof relies on a sharp result of non-oscillation of linear ordinary differential equations and on the comparison method.
Publié le : 2009-02-15
Classification:  Positive solution,  Nonlinear elliptic equation,  Exterior domain,  Comparison method,  34B05,  35J60
@article{1235574191,
     author = {Agarwal, Ravi P. and Mustafa, Octavian G. and Popescu, Liviu},
     title = {On the positive solutions of certain semi-linear elliptic equations},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {16},
     number = {1},
     year = {2009},
     pages = { 49-57},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1235574191}
}
Agarwal, Ravi P.; Mustafa, Octavian G.; Popescu, Liviu. On the positive solutions of certain semi-linear elliptic equations. Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, pp.  49-57. http://gdmltest.u-ga.fr/item/1235574191/