An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, II
Mabuchi, Toshiki
Osaka J. Math., Tome 46 (2009) no. 1, p. 115-139 / Harvested from Project Euclid
Recently, Donaldson proved asymptotic stability for a polarized algebraic manifold $M$ with polarization class admitting a Kähler metric of constant scalar curvature, essentially when the linear algebraic part $H$ of $\operatorname{Aut}^{0}(M)$ is semisimple. The purpose of this paper is to give a generalization of Donaldson's result to the case where the polarization class admits an extremal Kähler metric, even when $H$ is not semisimple.
Publié le : 2009-03-15
Classification:  14L24,  32Q15,  32Q20,  53C25
@article{1235574041,
     author = {Mabuchi, Toshiki},
     title = {An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, II},
     journal = {Osaka J. Math.},
     volume = {46},
     number = {1},
     year = {2009},
     pages = { 115-139},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1235574041}
}
Mabuchi, Toshiki. An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, II. Osaka J. Math., Tome 46 (2009) no. 1, pp.  115-139. http://gdmltest.u-ga.fr/item/1235574041/