Gaussian limits for generalized spacings
Baryshnikov, Yu. ; Penrose, Mathew D. ; Yukich, J. E.
Ann. Appl. Probab., Tome 19 (2009) no. 1, p. 158-185 / Harvested from Project Euclid
Nearest neighbor cells in Rd, d∈ℕ, are used to define coefficients of divergence (φ-divergences) between continuous multivariate samples. For large sample sizes, such distances are shown to be asymptotically normal with a variance depending on the underlying point density. In d=1, this extends classical central limit theory for sum functions of spacings. The general results yield central limit theorems for logarithmic k-spacings, information gain, log-likelihood ratios and the number of pairs of sample points within a fixed distance of each other.
Publié le : 2009-02-15
Classification:  φ-divergence,  central limit theorems,  spacing statistics,  logarithmic spacings,  information gain,  log-likelihood,  60F05,  60D05,  62H11
@article{1235140336,
     author = {Baryshnikov, Yu. and Penrose, Mathew D. and Yukich, J. E.},
     title = {Gaussian limits for generalized spacings},
     journal = {Ann. Appl. Probab.},
     volume = {19},
     number = {1},
     year = {2009},
     pages = { 158-185},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1235140336}
}
Baryshnikov, Yu.; Penrose, Mathew D.; Yukich, J. E. Gaussian limits for generalized spacings. Ann. Appl. Probab., Tome 19 (2009) no. 1, pp.  158-185. http://gdmltest.u-ga.fr/item/1235140336/