Markovianity and ergodicity for a surface growth PDE
Blömker, Dirk ; Flandoli, Franco ; Romito, Marco
Ann. Probab., Tome 37 (2009) no. 1, p. 275-313 / Harvested from Project Euclid
The paper analyzes a model in surface growth where the uniqueness of weak solutions seems to be out of reach. We prove existence of a weak martingale solution satisfying energy inequalities and having the Markov property. Furthermore, under nondegeneracy conditions on the noise, we establish that any such solution is strong Feller and has a unique invariant measure.
Publié le : 2009-01-15
Classification:  Surface growth model,  weak energy solutions,  Markov solutions,  strong Feller property,  ergodicity,  60H15,  35Q99,  35R60,  60H30
@article{1234881691,
     author = {Bl\"omker, Dirk and Flandoli, Franco and Romito, Marco},
     title = {Markovianity and ergodicity for a surface growth PDE},
     journal = {Ann. Probab.},
     volume = {37},
     number = {1},
     year = {2009},
     pages = { 275-313},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1234881691}
}
Blömker, Dirk; Flandoli, Franco; Romito, Marco. Markovianity and ergodicity for a surface growth PDE. Ann. Probab., Tome 37 (2009) no. 1, pp.  275-313. http://gdmltest.u-ga.fr/item/1234881691/