Fractional calculus on parabolic Bergman spaces
Hishikawa, Yôsuke
Hiroshima Math. J., Tome 38 (2008) no. 1, p. 471-488 / Harvested from Project Euclid
The parabolic Bergman space is the set of all $L^p$-solutions of the parabolic operator $L^{(\alpha)}$. In this paper, we study fractional calculus on parabolic Bergman spaces. In particular, we investigate properties of fractional derivatives of the fundamental solution of the parabolic operator. We show the reproducing property of fractional derivatives of the fundamental solution.
Publié le : 2008-11-15
Classification:  Fractional derivative,  Bergman space,  parabolic operator of fractional order,  reproducing kernel,  35K05,  26A33,  26D10
@article{1233152783,
     author = {Hishikawa, Y\^osuke},
     title = {Fractional calculus on parabolic Bergman spaces},
     journal = {Hiroshima Math. J.},
     volume = {38},
     number = {1},
     year = {2008},
     pages = { 471-488},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1233152783}
}
Hishikawa, Yôsuke. Fractional calculus on parabolic Bergman spaces. Hiroshima Math. J., Tome 38 (2008) no. 1, pp.  471-488. http://gdmltest.u-ga.fr/item/1233152783/